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PREFACE

In everyday conversation we are prone to use the word "infinite" so
casually that we are scarcely aware of its subtle mathematical mean-
ings. Thus we speak of infinite patience, or an infinite hoard of insects,
or an infinite variety of designs, and so forth. Such usage may serve a
useful emotional purpose or please our literary fancy, but it is hardly
sound mathematics. To the uninitiated, the word infinite is generally
associated with the idea of bigness enormity. Yet nothing could be
more misleading. The number of drops of water in all the oceans of
the world, to be sure, is very great. But presumably if we counted them
one by one, we would eventually come to the "last" drop. There is
some number that tells "how many" drops there are. Although it would
contain many, many digits, it would be a finite number.

Now consider the sequence of integers itself: 1, 2. 3, 4, . Upon
reaching any integer n, however great, there is always another integer
that immediately follows it, namely, n + 1. Can this procedure of nam-
ing the successor of any chosen integer ever cease? Is there a "greatest"
integer? Is there a "last" number? The answer is clearly, NO. But do
not regard this idea lightly! It has been aptly said that the distinction
between a sequence with a beginning and an end, and one that never
ends, is literally awe-inspiring.

The key-word here is the word endless. A simple word, but an elu-
sive idea. How can we visualize or think about something that never
ends"? Yet the fact remains that the human mind is capable ol rasp-
ing something that it cannot literally experience. We cannot "see': let
alone name, all the integers. But by a stroke of the wand we can say:
"There they areall of them at once And then we can proceed to
talk about the set of all the integers, or the set of all the points on a
line segment.

The concept of the infinite not only baffled but challenged mankind
for ages. The Greeks wrestled with the idea, as witness the famous para-
doxes of Zeno. Throughout the succeeding centuries mathematicians
continued to struggle with the concept, particularly from the time of
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Newton and Leibniz on. Not until the aid of the 19th century was
there a significant break-through.

The concept of an infinite set of things is relatively modern. The
..ither of this concept was Georg Cantor, who, about 1895, began to
ievelop a theory of classes, or set theory (Mengenlehre). Building on
this theory, he developed the doctrine of transfinite numbers, a doc-
trine which David Hilbert, another founder of modern twentieth-cen-
tury mathematics, hailed as "one of the greatest achievements of human
reason:* It is chiefly this aspect of the infinite which is so ably discussed
in the following essays.

William L. Schaaf
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FOREWORD

In the long slow evolution of mathematical thought, spanning at
least five thousand years, several notable breakthroughs occurred at
various times. One of the earliest was the Greek approach to demon-
strative geometry, or deductive proof in geometry. Another was the
marriage of algebra and geometry, or the invention of analytic geom-
etry. by Descartes about 1637. In more recent times, we had the crea-
tion of non.Euclidean geometries by Lobachevski and others. Not all
the significant milestones were in the field of geometry, of course. Some
were in arithmetic, in algebra, in logic, and in other fields:

Less than a century ago one of the most far reaching and revolu-
tionary breakthroughs was the theory of aggregates, or Mengenlehre,
developed by Georg Cantor about 1880, and known today as set theory.
Along with the theory of sets Cantor also created the transfinite num-
bers and the continuum. When he first announced his invention he
wrote to a friend: "I see it, but I don't believe it!" Some of the im-
plications of the theory were so startling, especially those concerning
infinite sets, that not a few contemporary mathematicians were reluc-
tant to accept the new doctrine. Indeed, despite the fact that the theorY
of transfinite numbers has since become quite respectable, there are
still a few mathematicians who are somewhat skeptical about the exist-
ence of transfinite numbers and operations with such numbers.

Be that as it may, the concepts developed by Cantor and others in
this field led to other highly significant mathematical results of indis-
pensible service to science, philosophy and cosmology. In this first essay,
the author, in bold strokes, gives a broad overview not only of Cantor's
theory of the infinite, but also some of the implications for contempor-
ary physics and relativity theory. In this connection we are reminded
of a perceptive observation made by the late J. W. N. Sullivan, who
expressed the conviction that

"the significance of mathematics resides precisely in the fact that
it is an art; by informing us of the nature of our own minds it in-
forms us of much that depends on our minds. It does not enable us
to explore some remote region of the externally existent; it helps to
show us how far what exists depends upon the way we exist. We
are the lawgivers of the uriverse: it is even possible that we can
experience nothing but what we have created, and that the greatest
of out mathematical creations is the material universe itself'
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Is There an Infinity?

The great German mathematician Georg Cantor proved that, so far
as mathematics is concerned, there is. Presenting a celebrated account
of his ideas and their consequences.

Since ancient times philosophers, theologians and mathematicians
have occupied themselves with the subject of infinity. Zeno of Elea in-
vented a group of famous paradoxes whose difficulties are connected
with the concept; in their time such leading thinkers as Aristotle, Des-
cartes, Leibnitz and Gauss grappled with the infinity problem without
making any notable contributions to its clarification. The subject is
admittedly complex and undeniably important. A firm grasp of the
problems of infinity is essential to an understanding of the revolution
in ideas that paved the way for the triumphant advance of modern
mathematics, with important consequences to physics, cosmology and
related sciences.

The following article is a condensed version of a lecture on infinity
by a noted Austrian mathematician, Hans Hahn, delivered a few years
ago before a general audience in Vienna. This is the first transla2i9n of
the lecture into English. Hahn was a member of the celebrated Vienna
Circle, a group of philosophers and scientists adhering to the philos-
ophy of logical positivism, among whose founders.were Otto Neurath
and Rudolf Carnap. The Circle annually presented popular lectures on
science, and this survey by Hahn of the concept of infinity is one of the

of the series.

Hahn began his lecture with a historical résumé (here omitted) and
then launched his discussion with a description of the work of the
founder of the modem mathematical theory of infinity, Georg Cantor.

Hans Hahn
It was Georg Cantor who in the years 187I-84 created a completely
new and very special mathematical discipline, the theory of sets, in
which was founded, for the first time in a thousand years of argument
back and forth, a theory of infinity with all the incisiveness of mod-
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ern mathematics. Like so many other new creations this one began
with a very simple idea. Cantor asked himself: "What do we mean
when we say of two finite sets that they consist of equally many things,
that they have the same number, that they are equivalent?" Obviously
nothing more than this: that between the members of the first set and
those of the second a correspondence can be effected by which each
member of the first set matches exactly a member of the second set,
and likewise each member of the second set matches one of the first.
A correspondence of this kind is called "reciprocally unique," or sim-
ply "one-to-one:' The set of the fingers of the right hand is equivalent
to the set of fingers of the left hand, since between the fingers of the
right hand and those of the left hand a one-to-one pairing is possible.
Such a correspondence is obtained, for instance, when we place the
thumb on the thumb, the index finger on ihe index finger, and so on.
But the set of both ears and the set of the lingers of one haad are not
equivalent, since in this instance a one-to-one correspondence is ob-
viously impossible: for if we attempt to place the fingers of one hand
in correspondence with our ears, no matter how we contrive there will
necessarily be some fingers left over to which no ears correspond. Now
the number (or cardinal number) of a set is obviously a characteristic
that it has in common with all equivalent sets, and by which it dis-
tinguishes itself from every sct not equivalent to itself. The number
5. for instance, is the characteristic which all sets equivalent to the
set of the fingers of one hand have in common, and which distin-
guishes them from all other sets.

Thus we have the following definitions: Two sets are called equiva-
lent if between their respective members a one-to-one correspondence
is possible; and the characteristic that one set has in common with
all equivalent sets, and by which it distinguishes itself from all other
sets not equivalent to itself, is called the (cardinal) number of that
set. And now we make the fundamental assertion that in these defi-
nitions the finiteness of the sets considered is in no sense involved;
the definitions can be applied as readily to infinite sets as to finite
sets. The concepts "equivalent" and "cardinal number" are thereby
transferred to sets of infinitely many objects. The cardinal numbers
of finite sets. i.e., the numbers I, 2, 3 . . . are called natural num-
bers; the cardinal numbers of infinite sets Cantor calls "transfinite
cardinal numbees:'

But are there really any infinite sets? We can convince ourselves of
this at once by a very simple example. There are obviously infinitely
many different natural numbers; hence the set of all the natural num-
bers contains infinitely many members: it is an infinite set. Now then,

4
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those sets that are equivalent to the set of all natural numbers, whose
members can be paired in a one-to-one correspondence with the nat-
ural numbers, are called denumerably infinite sets. . . . According to
our definition all denumerably infinite sets have the same cardinal
number; this cardinal number must now be given a name, just as the
cardinal number of the set of the fingers on one hand was earlier
given the name 5. Cantor gave this cardinal number the name "aleph-
null!' written N. (Why he gave it this rather bizarre name will be-
come clear later.) The number N is thus the first example of a trans-
finite cardinal number. Just as the statement "a set has the number
5" means that its members can be put in one-to-one correspondence
with the fingers of the right hand, or what amounts to the same
thing with the integers 1, 2, 3, 4, 5, so the statement "a set has the
cardinal number N" means that its members can be put in one-to-
one correspondence with the totality of natural numbers.

If we look about us for examples of denumerably infinite sets, we
arrive immediately at some highly smyrising results. The set of all
natural numbers is itself denumerably infinite; this is self-evident,
for it was from this set that we defined the concept "denumerably in-
finite:' But the set of all even numbers is also denumerably infinite,
and has the same cardinal number N as the set of all natural num-
bers, though we would be inclined to think that there are far fewer
even numbers than natural numbers. To prove this proposition we
have only to put each natural number opposite its double (see below).
It may clearly be seen that there is a one-to-one correspondence be-
tween all natural and all even numbers, and thereby our point is
established. In exactly the same way it can be shown that the set of
all odd numbers is denumerably infinite.

Even more surprising, perhaps, is the fact that the set of all pairs
of natural numbers is denumerably infinite. In order to understand
this we have merely to arrange the set of all pairs of natural num-
hers diagonally, whereupon we at once obtain a one-to-one corre-
spondence between all natural numbers and all pairs of natural num-
bers [tee table on page 81. From this follows the conclusion, which
Cantor discovered while still a student, that the set of all rational
fractions (i.e., fractions in which the numerators and denominator
are whole numbers, such as 1 /2. 2/3. etc.) is also denumerably infi-
nite, or equivalent to the set of all natural numbers, though again
one might suppose that there are many, many more fractions than
there are natural numbers. Whn is more. Cantor was able to prove
that the set of all so-called algebraic numbers, that is. the set of all
numbers that satisfy an algebnic equition of the form ax" aot"
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+ a. 1x -4- an = 0 with integral coefficients au, ai ... a., is denumer-
ably infinite.

At this point the reader tnay ask whether, in the last analysis, all
infinite sets are not denumerably infinite that is, equivalent. If this
were so, we should be sadly disappointed; for then, alongside the
finite sets there would simply be infinite ones which would all be
equivalent, and there would be nothing more to say about the matter.
But in the year 1874 Cantor succeeded in proving that there are also
infinite sets that are not denumerable; that is to say, there are other
infinite numbers, transfinite cardinal numbers, differing from aleph-
null. Specifically, Cantor proved that the set of all so-called real num-
bers (i.e., composed of all whole numbers, plus all fractions, plus all
irrational numbers) is non-denumerably infinite.

1 2 3 4 5 6

2 4 6 8 10 12

SFY OF EVEN NUMBERS = ALL INTEGEILS

[The essence of Hahn's account of Cantor's proof is that no com-
prehensive counting procedure ran be devised for the entire set of
real numbers, nor even for One of its proper subsets, such as all the
real numbers lying between 0 and 1. While the members of a specifi-
cally descrthed infinite set, such as all rational fractions or all algebraic
numbers, ran be paired off with the natural numbers, every attempt to
construct a formula for counting the all-inclusive set of real numbers
is invariably frustrated. No matter what counting scheme is adopted,
it can be shown that some of the real numbers in the set so considered
remain uncounted, which is to say that the scheme fails. It follows that
an infinite set for which no counting method ran be devised is non-
countable, in other words tum-denumerably infinite.]

It has thus been shown that the set of natural numbers and the sct
of real numbers arc not equivalent; that these two sets have different
cardinal numbers. The cardinal number of the set of real numbers
Cantor called the "power of the continuum"; we shall designate it
by r. Earlier it was noted that the set of all algebraic numbers is de-
numerably infinite, and we just now saw that the set of all real numbers
is not denumerably infinite; hence there must be real numbers that are
not algebraic. These arc the so-called "transcendental" numbers, whose
existence is demonstrated in the simplest way conceivable by Cantor's
brilliant train of reasoning.

6
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It is well known that the eal numbers can bc put in one-to-one
correspondence with the points of a straight line; hence c is also the
cardinal number of the set of all points of a straight line. Surprisingly
Cantor was also able to prove that a one-to-one pairing is possible
between the set of all points of a plane and the set of all points of a
straight line. These two sets are thus equivalent; that is to say, c is
also the cardinal number of the set of all points of a plane. though
here too we should have thought that a plane would contain a great
many more points than a straight line. In fact, s Cantor has shown,
c is the cardinal number of all points of three dimensional space, or
even of a space of any number of dimensions.

We have discovered two different transfinite cardinal numbers. N
and c: the power of the denumerably infinite sets and the power of
the continuum. Are there yet others? Yes, there certainly are infinitely
many different transfinite cardinal numbers; for given any set M. a
set with a.higher cardinal number can at once be indicated, since the

0CANTOR'S ALEPH-NULL

set of all possible subsets of M has a higher cardinal number than the
set M itself. Take, for example, a set of three things, such as the set
of the three figures 1 , 2, 3. Its partial sets are the following: 1; 2; 3;
1, 2; 2, 3; 1. 3thus the number of partial sets is more than three.
Cantor has shown that this is generally true, even for infinite sets.
For example, the set of all possible point-sets of a straight line has
a higher cardinal number than the set of all points of the straight
line; that is to say, its cardinal number is greater than c.

What is now desired is a general view of all pirisible transfinite car-
dinal numbers. As regards the cardinal numbers of finite sets, the

7



natural numbers, the following simple situation prevails: Among such
sets there is one that is the smallest, namely 1; and if a finite set M
with the cardinal number rn is given, a set with the next-larger car-
dinal number can be formed by adding one more object to the set
M. What is the rule in this respect with regard to infinite sets? It
can be shown without difficulty that among the transfinite cardinal
numbers, as well as among the finite ones, there is one that is the
smallest, namely N, the power of denumerably infinite sets (though
we must not think that this is self-evident. for among all positive
fractions, for instance, there is none that is the smallest). It Is, how-
ever, net so easy as it was in the case of finite sets to form the next-
larger to a transfinite cardinal number; for whenever we add one
more member to an .nfinite set we do not get a set of greater car-
dinality, only one of equal cardinality. But Cantor also solved this
difficulty, by showinv that there is a next-larger to every transfinite
cardinal number . . and by showing how it is obtained. We cannot
go into his proof he v. since this would take us too far into the realm
of pure mathemati4 ,. It is enough for us to recognize the fact that
there is a smallest Lransfinite cardinal number, namely N; after this

(1,1) (1,2) * (1,3) (1,4) (1,5)
,1 7 I/

(2,1) (2,2) (2,3) (2,4) ./ V
(3,1) (3.2) (3,3) . . .

7 if
(4.1) (4,2) . . .

(5.1) . .

THE DENUMERABLE INFINITY OF MRS OF NUMBERS

there is a next-larger, which is called NI; after this there is again a
next-larger, which is N and so on. But this still does not exhaust
the class of transfinite cardinals; for if it be assumed that we have
formed the cardinal numbers ND, N . that
is, all alephs (N) whose index n is a natural number, then there is again
a first transfinite cardinal number larger than any of these Cantor
called it /4, and a next-larger successor Ns, and so on and on.

The successive alephs formed in this manner represent all possible
transfinite cardinal numbers, and hence the power r of the contin-
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uum must occur among them. The question is which aleph is the
power of the continuum. This is the famous problem of the con-
tinuum. We already know that it cannot be No since the set of all
real numbers is non-denumerably infinite, that is to say, not equivalent
to the set of natural numbers. Cantor took N. to be the power of the
continuum. The question, however, remains open. . .

On the basis of this rather sketchy description of the structure of
the theory of sets, the answer to the question, "Is there an infinity?"
appears to be an unqualified "Yes:' There are not only, as Leibnitz
had already asserted, infinite sets, but there are even what Leibnitz
had denied, infinite numbers, and it can also be shown that one can
operate with them, in a manner similar to that used for finite natural
numbers.

So far we have dealt only with the question whether there are in-
finite sets and infinite numbers; but no less important, it would ap-
pear, is the question whether there are infinite extensions. This is
usually phrased in the form: "Is space infinite?" Let us begin by treat-
ing this question also from a purely mathematical standpoint.

We must recognize at the outset that mathematics deals with very
diverse kinds of space. Here, however, we are interested only in the
so-called Riemann spaces, and in particular in the three-dimensional
Riemann spaces. Their exact definition does not concern us; it is
sufficient to make the point that such a Riemann space is a set of
elements, or points, in which certain subsets, called "lines." are the
objects of attention. By a process of calculation there can be assigned
to every such line a positive number, called the length of the line,
and among these lines there are certain ones of which every suffi-
ciently small segment AB is shorter than every other line joinirg the
points A, B. These lines are called the geodesics, or the straight lines
of the space in question. Now it may be that in any particular Rie-
mann space there are straight lines of arbitrarily great length; in that
case we shall say that this space is of infinite extension. On the other
hand, it may also be that in this particular Riemann space the length
of all straight lines remaitis less than a fixed number; then we say that
the space is of finite extension. Until the end of the 18th century
only one kind of mathematical space was known, and hence it was
simply called "space This is the space whose geometry is taught in
school and which we call Euclidean space, after the Greek mathema-
tician Euclid, who was the first to develop the geometry of this space
systematically. And from our definition above, this Euclidean space
is of infinite extension.

9



There are, however, also three-dimensional Riemann spaces of finite
extension; the best known of these are the so-called spherical spaces
(and the closely related elliptical ones), which are three-dimensional
analogues of a spherical surface. The surface of a sphere can be con-
ceived as a two-dimensional Riemann space, whose geodesics, or
"straight" lines, are arcs of great circles. (A great circle is a circle cut
on the surface of a sphere by a plane passing through the center of
the sphere, as br instance, the equator and the meridians of longi-
tude on the earth.) If r is the radius of the sphere, then the full cir-
cumference of a great circle is 27r; that is to say, no great circle can
be longer than 2%-r. Hence the sphere considered as two-dimensional
Riemann space is a space of finite extension. With regard to three-
dimensional spherical space the situation is fully analogous; this also
is a space of finite extension. Nevertheless, it has no boundaries; one
can keep walking along one of its straight lines without ever being
stopped by a boundary of the space. After a finite time one simply
comes back to the starting point, exactly as if one had kept moving
farther and farther along a great circle of a spherical surface. In other
words, we can make a circular tour of spherical space just as easily
as we can make a circular tour of the earth.

Thus we see that in a mathematical sense there arc spaces of in-
finite extension (e.g., Euclidean space) and spaces of finite extension
(e.g., spherical and elliptical spaces). Yet this is not at all what most
persons have in mind when they ask: "Is space infinite?" They are
asking, rather: "Is the space in which our experience and in which
physical events take place of finite or infinite extension?"

So long as no mathematical space other than Euclidean space was
known, everyone naturally believed that the space of the physical
world was Euclidean space infinitely extended. Kant. who explicitly
formulated this view, held that the arrangement of our observations
in Euclidean space was an intuitional necessity: the basic postulates
of Euclidean geometry are synthetic. a priori judgments.

But when it was discovered that in a purely mathematical sense spaces
other than Euclidean also "existed" (that is, led to no logical contradic-
tions), men began to question the position that the space of the physical
world must be Euclidean space. And the idea developed that it was a
question of experience, that is, a question that must be decided by ex-
periment, whether the space of the physical world was Euclidean or not.
Gauss actually made such experiments. But after the work of Henri
Poincare, the great mathematician of the end of the 19th century, we
know that the question expressed in this way has no meaning. To a con-

10



siderable extent we have a free choice of the kind of mathematical space
in which we arrange our observations. The question does not acquire
meaning until it is decided how this arrangement is to be carried out.
For the important thing about Riemann space is the manner in which
each of its lines is assigned a length, that is, how lengths are measured
in it. If we decide that measurements of length in the space of physical
events shall be made in the way they have been made from earliest times,
that is, by the application of "rigid" measuring rods, then there is mean-
ing in the question whether the space of physical events, considered as
a Riemann space, is Euclidean or non-Euclidean. And the same holds
for the question whether it is of finite or infinite extension.

The answer that many perhaps are prompted to give, "Of course, by
this method of measurement physical space becomes a mathematical
space of infinite extension:' would be somewhat too hasty. As back-
ground for a brief discussion of this problem wc must first give a short
and very simple statement of certain mathematical facts. Euclidean
space is characterized by the fact that the sum of the three angles of a
triangle in such space is 180 degrees. In spherical space the sum of the
angles of every triangle is greater than 180 degrees, and the excess over
180 degrees is greater the larger the triangle is in relation to the sphere.
In the surface of a sphere, the two-dimensional analogue of spherical
space, this point is presented to us very clearly. On the surface of a
sphere, as already mentioned, the counterpart of the straight-line tri-
angle of spherical space is a triangle whose sides are arcs of great circles,
and it is a well-known proposition of elementary geometry that the sum
of the angles of a spherical triangle is greater than 180 degrees, and that
the excess over 180 degrees is greater the larger the surface area of the
triangle. If a further comparison be made of spherical triangles of equal
area on spheres of different sizes, it may be seen at once that the excess
of the sum of the angles over 180 degrees is greater the smaller the
diameter of the sphere, which is to say, the greater the curvature of the
sphere. :his gave rise to the adoption of the following terminology
(and here it is simply a matter of terminology, behind which nothing
whatever secret is hidden): A mathematical space is called "curved" if
there are triangles in it the sum of whose angles deviates from 180
degrees. It is "Imsitively curved" if the sum of the angles of every tri-
angle in it (as in elliptical and spherical spaces) is greater than 180
degrees, and "negatively curved" if the sum is less than 180 degrees
as is the case in the "hyperbolic" spaces discovered by Bolyai and
Lobachevsky.

From the mathematical formulations of Einstein's General Theory of
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Relativity it now follows that, if the previously mentioned method of
measurement is used as a basis, space in the vicinity of gravitating masses
must he curved in a "gravitational field:' The only gravitational field
immediately accessible, that of the earth, is much too weak for us to be
able to test this assertion directly. It has been possible, however, to prove
it indirectly by the deflection of light raysas determined during total
eclipsesin the much stronger gravitational field of thc sun. So far as our
present experience goes, we can say that if, by using the measuring meth-
ods mentioned above, we turn the space of physical events into a math-
ematical Riemann space, this mathematical space will be curved, and
its curvature will, in fact, vary from place to place, being greater in the
vicinity of gravitatMg masses and smaller far from them.

To return to thc question that concerns us: can we now say whether
this space will be of finite or infinite extension? What has been said so
far is not sufficient to give the answer: it is still necessary to make certain
rather plausible assumptions. One such assumption is that matter is more
or less evenly distributed throughout thc entire space of the universe.
The observations of astronomers to date can, at least with the help of a
little good will. be brought into harmony with this assumption. Of
course it can be true only when taken in the sense of a rough average,
in somewhat the same sense as it can be said that a piece of ice has on
the whole the same density throughout. just as the mass of the ice is con-
centrated in a great many very small particles, separated us, intervening
spaces that are enormous in relation to the size of these particles, so the
stars in world-space arc separated by intervening spaces that are enor-
nums in relation to the size of the stars. Let us make another quite plau-
sible assumption, namely that by and large this average density of mass
in the universe remains unchanged. We consider a piece of ice stationary,
even though we know that the particles that constitute it are in active
motion: we may likewise deem the universe to be stationary, even though
we know the stars to be in active motion.

With these assumptions, then, it follows from the principles of the
General Theory of Relativity that the mathematical space in which we
are to interpret physical events must on the whole have the same curv-
ature throughout. Such a space, however, like the surfacc of a sphere in
two dimensions, is necessarily of finite extension. In other words, if we
use as a basis the usual method of measuring length and wish to arrange
physical events in a mathematical space, and if we make the two plau-
sible assumptions mentioned above, thc conclusion follows that this space
must bc of finite extension.

I said that the first of our assumptions. that of the equal density of
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mass throughout space, conforms somewhat with observations. Is this
also true of the second assumption, as to the constant density of mass
with respect to time? Until recently this opinion was tenable. Now, how-
ever, certain astronomical observations seem to indicateagain speaking
in broad termsthat all heavenly bodies are moving away from us with
a velocity that increases the greater their distance from us, the velocity
of those farthest away being quite fantastic. But if this is so, the average
density of mass in the universe cannot possibly be constant in time;
instead it must continually become smaller. Then if the remaining fea-
tures of our picture of the universe are maintained, it would mean' that
we must assume that the mathematical space in which we interpret phys-
ical events is variable in time. At every instant it would be a space with
(on the average) a constant positive curvature, that is to say, of finite
extension, but the curvature would be continually decreasing while the
extension would be continually increasing. This interpretation of phys-
ical events turns out to lw entirely workable and in accord with the
General Theory of Relativity.

But is this the only theory consistent with our experience to date? I
said before that the assumptim that the space of the universe was on the
whole of uniform density could fairly well be brought into harmony
with astronomical observations. At the same time, these observations
do not contradict the entirely different assumption that we and our sys-
tem of fixed stars are situated in a region of space where there is a strong
concentration of mass, while at increasing distances from this region the
distribution of mass keeps getting sparser. This would lead us still
using the ordinary method of measuring length to conceive of the
physical world as situated in a space whose curvature becomes smaller
and smaller at increasing distances from our fixed star system. Such a
space can be of infinite extension.

Similarly the phenomenon that the stars arc in general receding from
us, with greater velocity the farther away they are, can be quite simply
explained as follows: Assume that at some time many masses with com-
pletely different velocities were concentrated in a relatively small region
of space, let us say in a sphere K. In the course of time these masses will
then, each with its own particular velocity, move out of this region of
the space. After a sufficient time has elapsed, those that have the greatest
velocities will have moved farthest away from the sphere K, those with
lesser velocities will be nearer to K, and those with the lowest velocities
will still be very close to K or even within K. Then an observer within
K, or at least not ux) far removed from K, will see the very picture of
the stellar world that we have described above. The masses will on the
whole be moving away from him, and those farthest away will be moving
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with the greatest velocities. We would thus have an interpretation of the
physical world in an entirely different kind of mathematical space that
is to say. in an infinitely extended space.

In summary we might very well say that the question, "Is the space of
our physical world of infinite or of finite extension?" has no meaning as
it stands. It does not become meaningful until we decide how we are
to go about fitting the observed events of the physical world into a math-
ematical space, that is, what assumptions must be made and what logical
requirements must be satisfied. And this in turn leads to the question.
"Is a finite or an infinite mathematical space better adapted for the
arrangement and into pretation of physical events?" At the present stage
of our knowledge we cannot give any reasonably well-founded answer
to this question. It appears that mathematical spaces of finite and of
infinite extension are almost equally well suited for the interpretation
of the observational data thus far accumulated.

Perhaps at this point confirmed 'finitists" will say: "If this is so, we
prefer the scheme based on a space of finite extension, since any theory
incorporating the concept of infinity is wholly unacceptable to us:' They
are free to take this view if they wish. but they must not imagine there-
by to have altogether rid themselves of infinity. For even the finitely
extended Riemann spaces contain infinitely many points, and the math-
ematical treatment of time is such that each time-interval, however small,
contains infinitely many time-points.

Must this necessarily be so? Are we in truth compelled to lay the scene
of our experience in a Mit hematical space or in a mathematical time
that consists of infinitely many points? I say no. In principle one might
very well conceive of a physics in which there were only a finite number
of space points and a finite number of time points in the language of
the theory of relativity, a finite number of "world points:' In my opinion
neither logic nor intuition nor experience can ever prove the impossi-
bility of such a truly finite system of physics. It may be that the various
theories of the atomic structure of matter, or today's quantum physics,
are the first foreshadowings of a future finite physics. If it ever comes,
then we shall have returned after a prodigious circular journey to one
of the starting points of Western thought, that is, to the Pythagorean
doctrine that everything in the world is governed by the natural
numbers.

If the famous theorem of the right-angle triangle rightly bears the
name of Pythagoras, then it was Pythagoras himself who shook the foun-
da tions of his doctrine that everything was governed by the natural
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numbers. For fiom the theorem of the right triangle there follows the
existence of line segments that are incommensurable, that is, whose rela-
tionship with one another cannot be expressed by the natural numbers.
And since no distinction was made between mathematical existence and
physical existence, a finite physics appeared impossible. But if we are
clear on the point that mathematical existence and physical existence
mean basically different things; that physical existence can never follow
from mathematical existence; that physical existence can in the last anal-
ysis be proved only by observation, and that the mathematical difference
between rational and irrational forever transcends any possibility of
observation then we shall scarcely be able to deny the possibility in
principle of a finite physics. Be that as it may, whether the future pro-
duces a finite physics or not, there will remain unimpaired the possibil-
ity and the grand beauty of a logic and a mathematics of the infinite.
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FOREWORD

Although this essay has a slightly pedagogical flavor, it is nevertheless
a very dear, concise and intelligible account of the general concept of
infinity. Where the preceding essay may have stretched your imagination
you will find this article somewhat easier reading. It will also su est
aspects of algebra with which you may very well be familiar. At all
events, it is likely to serve a double purpme: it may clear up some points
in Professor Hahn's article that you did not understand, and it may pre-
pare you to appreciate more fully the following article by Mr. Gardner.
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Infinity and Its Presentation at
the High School Level

Margaret E Wilierding

INTRODUCTION

The nature of this paper is twofold; first, it is a 'popular account of
the work of Georg Cantor on infinity, and second, it illustrates a method
of presenting some of his theories, and other related ones, to a student
at the high school level.

Although Georg Cantor succeeded in defining infinity in mathemati-
cal terms about eighty years ago, his success has not yet penetrated to
our high school teaching (nor, it would seem, to many of the twentieth
century philosophers who still regard infinity as a paradox).

It is not to be supposed that there are no problems left concerning the
infinite, nor, that the new definition of infinity has not engendered some
of its own paradoxes; there is still a large field for further investigation.
However, most mathematicians accept the work of Cantor as proof of
the existence of infinity.

It is hard to understand the reluctance of educators to put some of this
important material into the high school curriculum. It is not difficult
and it is very important. The purpose of this paper is to explain just
what infinity is all about, how it is taught in schools today and how it
should be taught. It would be going too far afield to attempt a complete
historical treatise on infinity or an analysis of all the philosophical and
mathematical subtleties that have arisen in the wake of Cantor's work,
but some will be mentioned.

In defining infinity it will be found necessary to talk about the general
concept of number and give it a precise definition. It will also be neces-
sary to dispel some 'common-sense' notions about both number and
classes.
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The concepts of number, cardinal number, infinite set, and one-to-
one correspondence are extremely important. If this paper can give an
insight into some of these concepts, as well as give a historical account
of Cantor's efforts, its purpose will have been realized.

ZENO'S PARA.DoxEs

Philosophers have puzzled over infinity ever since the ancient Greek
world of Socrates and Plato. Zeno, who appears in Plato's Parmenides as
Socrates' instructor, invented a number of ingenious arguments con-
cerning the infinitesimal, continuity and the infinite. It is difficult to
know exactly what Zeno's words really were since we know of his argu-
ments only through Aristotle, who was criticizing Plato. It may be that
Aristotle distorted the arguments in order to refute them.'

We shall consider briefly the three most famous paradoxes. It is these
arguments that have led to most of the controversy and paradoxes con-
cerning infinity for the last 2500 years. The first argument is that of the
race-course. According to Burnet it is as follows:

You cannot get to the end of a race-course. You cannot traverse an infinite num-
ber of points in a finite time. You must traverse the half of any given distance
before you traverse the whole, and the half of that again before you can traverse it.
This goes on ad infinitum, so that there are an infinite number of points in anv
given space, and you cannot touch an infinite number one by one in a finite time.:

His second argument concerns the race between Achilles and the tor-
toise. Again quoting Burnet:

Achilles will never overtake the tortoise. He must first reach the place from
whh h the tok wise started. By that time the tortoise will have got some way alwad.
Achilles must then make up that, and agpin the tortoise will be ahead. He is always
coming nearer, but he never makes up to :t.3

In this argument we see that, for every position that Achilles is at, the
tortoise is at another one. Thus both Achilles and the tortoise must
occupy exactly the same number of positions or instants. But if Achilles
actually overtakes the tortoise then he clearly must occupy all those posi-
tions that the tortoise occupies and more besides. Since this implies a
contradiction then Achilles never can catch the tortoise. This argument
is not so easily disposed of as the first one as we shall see.

Zeno's third argument consists in showing that an arrow in flight can-
not move. He seems to be assuming that a given length of time has a
finite number of instants. Thus at any given instant of time the arrow is

' gu,i11, Bertrand. Our Knowledge of the External Woad (W W Norton and CAJ., Inc., 19'29),
P.

'Burnet. John. Early Orrilt Philosophy (London: A. and C. Slack), p. 347.
'Ibid.
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just exactly where it is and no other. It cannot be moving during the
instant because this would put it in different places during the instant
and require the instant to be divisible. Thus the arrow is in one position
at one instant but miraculously in another position in the next instant
although at no time is it ever moving! Therefore the arrow is at rest.

The first argument is disposed of easily. Zeno's assumption that add-
ing an infinite number of terms always gives infinity for an answer is
wrong. Consider the infinite series:

1/2 4- 1/4 + 1/8+ 1 16 + 1/32 +...
Adding term by term we get, successively. 1/2, 3/4. 1/8. 15/16, 31/32,

. . . Obviously the sum of this infinite series never even gets as large as
I. Still, it requires some knowledge of infinity to prove this.

The second argument, however, forces us to rid ourselves of one of the
notions that is deep-seated in all of us that the whole is always greater
than any of its parts. We shall return to this later after we have defined
an infinite set.

The third argument, strangely enough, is actually true, though with
modifications. The arrow really is at rest at every instant, though this
does not lead to the conclusion that it is therefore not in motion. The
solution of this paradox will also become apparent.

It seems that, in any case. we must define what we mean by an infinity
of numbers, or an infinite set, in order to dispense with Zeim's paradoxes
(and any others tbat have to do with infinity). This is precisely what
Cantor set out to do.

CANTOR'S THEORY OF TRANSFINITE NUMBERS

Cantor began with what wc know of finite sets. f le first had to decide
what was meant by saying that two finite sets of objects have the same
number of objects. At first glance it appears that we should simply count
each set and compare MIT answers. hut this just shifts the problem to
another onc. For, if we (omit the objects in the first set and end at 64
(say), and similarly arrive 64 for the second set, why do we say that the
Sets are numerically equal? Because 64 equals 64? But '64' is just the
counting number we arrived at for the last object. The crux of the mat-
ter is that, in our counting system, the last number arrived at in counting
also tells just how many objects have been counted. Our two sets are
numerically equal, not because '64' is the last number arrived at in
counting each set. but because there arc exactly 64 objects in each set.
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This is not sophistry. If we counted by using the names in a telephone
directory beginning with the A's. arriving at the name Ackerman for
our last object might be correct, but we still wouldn't know how many
objects we had. The problem would become hopelessly snarled if we
used different directories from 'different cities. Yet-out counftng would,
in a sense, be correct. Of course we'd never know where we were, espe-
cially when we got to the "Stniths'l

Now, however, we have gotten a glimpse of what counting is all about.
It is really a correspondence between symbols (numbers) and objects.
Two finite sets of objects may be said to have the same number of things
if to each member of the first set there corresponds one and only one
member of the second set and to each member of the second set there
corresponds one and only one member of the first set. Such a correspond-
ence is called a "one-to-one' correspondence.

There are just as many fingers on our two hands as there are fingers
on a pair of gloves, because, when we put the gloves on, no fingers of
our hands atz left sticking out and no fingers of the glove remain un-
filled. Similarly, it is easy to tell if there are the same number of people
in an auditorium as there are chairs by simply asking everyone to be
seated. If there are no people left standing .1 no empty seats, there
must be just as many chairs as people. Note particularly that we may
not even know how many people or how many chairs there actually are,
yet we still know that both quantities are exactly equal.

This becomes even more important when it would be impossible to
count the number of objects in a set. Thus. if we exclude bigamists, there
arc exactly as many husbands as wives in the world although it would be
impossible to count how many of each there arc. It is just this one-to-one
correspondence that we make use of when we count the members of a set.
Wc let each object correspond to a number and vice-versa. Thus 'one'
corresponds to the first object, 'two' to the second, 'three' to the third
and so on. If there are sixty-four objects, the last object will correspond
to the number "sixty-four: But since we know that there are just sixty-
four numbers from 'one' to "sixty-four: then there arc exactly sixty-four
objects that we have counted.

The trouble with counting is that it becomes virtually impossible
when dealing with extremely large numbers. Besides, counting requires
that things be put in order so that there is a first object. a second object,
a third object, etc. We saw earlier that this wasn't necessary to determine
the equality of sonic sets, e.g., the number of husbands and wives in the
world. We have,therefore, two kinds of numbers. ordinal numbers and
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cardinal numbers. Ordinal numbers tell 'which one: Cardinal numbers
tell 'how many: Thus we say that Saturday is the seventh day of the
week, but that there are seven days in a week. The first is an ordinal
number and depends on the position of Saturday with respect to the
other days; the second is a cardinal number which is not affected by
position or order.

A cardinal number may be defined as follows: There arc just as many
fingers on my right hand as on my left. There are just as many letters in
the word 'right' as there are fingers on my right hand. There are just
as many natural numbers from one to five as fingers on my right hand.
In fact, there are many classes of things which have the same number
of objects as there are fingers on my right hand. All of these may be
ascertained by our method of one-to-one correspondence. Each of these
classes is called 'equivalent' to our original class. All of these classes
have something in common, a certain 'fiveness: and it is to this prop-
erty that we give the cardinal number, five.

Now if wc happen to know the cardinal number of one collection of
objects and there exists a one-to-one correspondence between the ob-
jects of this collection and those of a second collection, then the second
collection has the same cardinal number as the first. This follows di-
rectly from our definitions of equivalence and cardinal number.

We use this principle in daily life constantly without realizing it. If
someone were to ask you how many squares there are in each row of a
chess board, you would count one row and announce your answer
eight. If your interrogator were mathematically minded hc might point
out that you had only counted one row, not all of them. It is unlikely that
you would try to prove there are eight squares in every row by then
counting the other seven rows. More likely you would retort. "It's
Avious. Every square in each row is set exactly below one square in
the row above it. Therefore, since I counted eight in the first row,
there arc eight in every row:' Here you have made use of the prMciple
pointed out above, albeit unknowingly.

Again, every time you wish to find the number of objects in a rec-
tangular array. you count the objects in one row and the objects in
one column and multiply. That the answer you obtain is the correct
one is only afforded by the truth of our principle (and the truth of the
Inuit ipl kat ion table).

Up to this point all is well. Cantor then went on to ask himself,
"Why limit ourselves to finite sets; why not extend our definition to
the infinite?" And so he did. The terms equivalent and cardinal number
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are used with no change in meaning to define infinite sets.

The most obvious example of an infinite set is the number of nat-
ural. or counting. numbers. i.e., the number of numbers beginning 1,
2, S Since these numbers never end (there is no largest number
since one can always be added to it making it Larger), There can be no
ordinary cardinal number to tell how many thaFire. Whatever
number it is, it is not finite; Cantor therefore called such numbers
'transfinite numbers:4 The cardinal number for the number of nat-
ural numbers he called 'aleph-null: written tc,.' the first letter of the
Hebrew alphabet. The subscript 0 indicates that this is the smallest
(first} transfinite number. Any set equivalent to this set would have
the same cardinal number N. Such sets are called 'denumerably
infinite: We can now define how many natural numbers there are;
there arc exactly lc of them.

Let us proceed to find some other denumerably infinite sets. We
immediately find that the set of even numbers is also denumerably
infinite. That is, there are just as many even numbers as there are
natural numbers, even though the natural numbers contain all the
even numbers and the odd ones as well. This seems impossible until
we ask ourselves again what we mean by equality. Can we put the
even numbers in a one-to-one correspondence with the natural num-
bers? The answer is 'yes' as seen in the following:

1

I
2

2 3 4 5 6 7 ..
$ $ $

4 6 8 10 12 14 2n

lb every natural number in the first row corresponds its double in
the second row, and to every even number in the second row corre-
sponds its half in the first row. Since every natural number can be
doubled to give an even number and every even number halved to
give a natural number. both rows are complete; that is, no integers
and no even numbers have been left out or used more than once. It
follows that the cardinality of the two sets is the same and they are
equivalent. By a similar correspondence we find that there are just as
many odd numbers as counting numbers.

It was just this example that caused Leibniz to aver that there werz
no infinite numbers. He claimed (correctly) that the above illustration
showed that the whole is equal to one of its parts. Since this implied a

Cantor. Ceorg. Contributions to the Founding of the Theory of Tratufinia Numbers (New
'York: Dover PublicAtions, WO, p. 103.

'Ibid.. p.104.
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contradiction, Leibniz rejected it.' But it is just this fact that Cantor
(and, independently, Dedekind) used to define an infinite set. An
infinite set is one which can be put into a one-to-one correspondence
with a proper subset of itself.

Let.us see if there- are more denumerably infinite sets. WE might
expect that the number of fractions would be greater than the number
of natural numbers. Considering all of the fractions there must surely
be more of them than there are integers. But, by this time, we have
found our common sense to be unreliable. Our problem is to attempt
to set up a one-to-one correspondence between the fractions and the
integers. This cannot be done by magnitude for there is no smallest
fraction; neither is there, given any fraction, a next larger fraction.
How then can we arrange the fractions to insure that we include all
of them?

Cantor set up the following scheme: All fractions are really just a
pair of integers, the numerator and the denominator. Since the sum of
two integers is another integer, this affords us a method of arranging
them. We shall take all fractions whose numerator and denominator
add up to two, then those that add up to three, etc., as follows:

1/1 1/2-41/3 l/4-41/5 1/6

2/1 2/2 2/3 2/4 2/5 .../
3/1 3/2 3/3 3/4 ...
4/1 4/2 4/3 ...
5/1 5/2 .../
6/1

where the fractions are taken in the order indicated by the arrows. We
see that no fractions will be left out by this scheme, since the first row
contains all fractions whose numerator is 1, the second row all frac-
tions whose numerator is 2, etc, Thus a one-to-one correspondence is
set up as follows:

'Rustell. Bertrand, Our Knowledge of the Extrynal World (New York: W W Norton and Corn.
pally, Inc.. 1929), pp. 207-209.
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1 2 3 4 5 6 7 8 9 10 11$$$$$$$$$$$
1/1 2/1

14 15

1/2 1/3

16 17:I$..$$$*$i
2/2 3/1 4/1 3/2 2/3 1/4 1/5

18 19 20 21 . .

4/2 5/1 6/1 5/2 4/3 3/4 2/5 1 /6 .

We have shown that there are just as many fractions as integers.'

We also can see that adding 1 to every integer gives us a new set
that has just as many nymbers as before, as the following correspond-
ence shows:

1 2 3 4 5 6 7

2 3 4 5 6 7 8

We are thus led to some strange arithmetic:

N + 1 No

N + 2 =

N. 4- N =
and,

2 = N,,
3 N,, = N,,

IC N =
This last equation results from our work with fractions. It is easily

shown that n numbers taken two at a time form n2 pairs.* Thus there
are 14?' fractions. But we showed that there were also Nu fractions, from
which,

N follows.

Transfinite numbers lead to strange answers when we try to sub-
tract or divide them. Substracting a finite number from N always gives N
again, but what is the result of subtracting N from N?-f

Hahn, Hans, "Infinity:* The World of Mathematics (edit. by James R. Newman) (New York:
Simon and Schuster, 1956), g. 1595.

Strktly speaking, n' ordered pairs. (Editor)
t It can he shown that N. n = lc on the hasis trf a aigoonis definilion of a uaidinal sow frn

two dhjoint sets A and B, N(A) N(B) = N(AUB). Cf. Yarnelle, An Introduction to Translinite
Mathematifs, pp. 18-24; Heath (1954). (Editor)
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It equals any number from 0 to No as we shall show. Suppose from
the set of ail of the natural numbers we subtract the set of all the
natural numbers. We will have nothing left and may write,

If, now, from the counting numbers we subtract all integers greater
than some number, say 12, the first twelve integers are left and we write,

IC =112
Now subtracting all the odd numbers from the counting numbers, we
are left with all the even numbers, an infinite number. Thus

=
It would seem at this point that all infinite collections have the

same cardinal number N, for, can't all infinite sets be put into some
kind of one-to-one correspondence with the natural numbers? Cantor
wondered about this, especially in regard to the number of real num-
bers, both rational and irrational. To make it easier, he considered
only those real numbers between 0 and 1. Now it is known that every
real number can be written as an infinite decimal expansion, repeating
or non-repeating, depending on whether it is rational or irrational.I
Thus,

1/3 -= 0.3533333 ...
1/7 = 0.142857142857 . . .

V2/2 0.707109 .

.7r/4 0.785398165 ..
Cantor's problem was, as in the case of the fractions, to find some
kind of scheme in which these decimals could be paired with the in-
tegers. Not discovering any, he assumed that a scheme had been found
and then tried to find some real number which had possibly been
omitted. Such a scheme would look something like this:

0.3154026 .

0.9684459 . .

0.1243867 . . .

0.6864901 .

-

Now if there is any number which is not included in this array it
j Thc reader should note that .1000 ... .0999.. . . (Editor)
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follows that it must differ from every single number in the array, in
at least one digit. Cantor had to find just such a number. This he
found could be done. Ile chose a number whose first digit differs
from the first digit of the decimal in the first row, say 5; its second
digit diffeLs from the secqnd digit of the decimal in the second row,
say 3: its third digit differs from the third digit of the decimal in file
third row, say I, and so on. In this manner, the new number we have
written will differ from every single decimal in the array. There is
no use -saying that this new number will appear 'somewhere' in the
infinite array, for the question then is where? Is it in the 237th row?
No, because our new number differs from the 237th number in its
237th digit, and similarly for any other position in the array. Now,
since the number we made up was an arbitrary one, it is easy to see
that any one of an infinite number of numbers could be written which
would not appear in the array. Thus there are more real numbers
than natural numbers. This new transfinite cardinal number Cantor
called r, the 'power of the contintium:" It is thought that c is probably
Ni, the next larger transfinite numbers after N, but this has not been
proved. Cantor also showed that there is an infinity of transfinite num-
bers, N. N tc, but neither these nor the question of whether r
and N, ate the same cardinal number need concern us here.

The number c is important. however, because it is known that the
points on a line may be put in a one-to-one correspondence with the
real numbers. Thus c is thc cardinal number of the number of points
on a line. Note also that the length of the line is unimportant. There
are just as many points on a short line as on a long one! The follow-
ing geometric diagram makes this apparent: (taken from kasner and
Newman).°

Let line AB be twice as long as A'B'. Let L be the intersection of

' Cantor. uv cit. p. 96.
limner, Edward and Ncwman, James, Mathematic+ and the Imagination (New York Simon and

Schuster, 1940), p. 55.
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lines and BB'. A one-to-one correspondence can be made be-
tween the points of AB and those of Alr by drawing straight lines
from 1. intersecting AB and AT' in corresponding points. Thus M
corresponds to AV in the diagram. It is easily seen that for every point
on A73' there corresponds a unique point on AB and vice-versa.

Wc may now return to Achilles who is still trying to overtake the
tortoise. We claim that Achilles overtakes the tortoise and passes him,
as common sense would suppose. Zeno would argue that this would
require Archilks to be in more places than the tortoise but this is not
so. Wc have just seen that a short line has the same number of points
on it as a longer one. Thus. although Achilles travels a greater dis-
tame than the tortoise. they both touch the same number of points.

The arrow in Bight may now be re-examined. We claimed that the
arrow really is at rest at every instant. But. contrary to Zeno. time is
infinitely divisible just as space is. The arrow is at one place one in-
stant and at another place at another instant. Where is it at inter-
mediate times? It is at intermediate points. There is no 'next' point to
any given one. This may be difficult to accept. but only because we
have fixed ideas about what we think motion really is.

At this point we will close our discussion of Cantor's work on infin-
ity. For those who desire a more rigorous mathematical treatment of
the ideas eximunded here, there is no better reference than Cantor's
original work. Contribution.% to the Founding of the Theon of Trans-
finite Numben, with a long and valuable preface written by Philip
E. B. .jourdain. This work is too abstruse to be covered in this paper,
but it is excellent for anyone wishing to delve into the mathematical
and logical developments of the theory of infinite sets.

INEINITV IN THE HIGH SCHOOLS

From what has gone before, it is evident that Cantor's theory can
be taught in high sdmol. It requires only a cleansing of the brain of
some 'common-sense' notions for its trtnh and power to develop. Its
importame cannot be denied. Even if the concept of thc one-to-one
correspondence were the only idea gotten across, this alone might
justify its place in the curriculum. But more, without a thorough
understanding of infinity. the student cannot .be expected to grasp the
full meaning of some of the most important parts of mathematics.
e.g., set theory algebra. the theories of calculus, of continuity, and of
limits. It is readily apparent that the theory of the infinite as dis-
cussed in this paper could be taught in not more than a week's time.
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Let us examine very briefly just what is being taught in schools
today. Although the infinite crops up in a number of instances in
algebra and geometry, it is usually passed off by the teacher with little
or no explanation at all.

It is only when geometric progressions are taught that infinity is
finally admitted into the curriculum, and even then it is almpst apolo-
getically, Students are taught that the sum S of a geometric progres-
sion of n terms is given by the formula,

S (a ---ar")/(1 r)

where a is the first of the progression and r the common ratio of one
term to its predecessor. When r is a ratio less than 1, and n is allowed
to become large without limit, the problem reduces itself to the fol-
lowing:

What is the value of arm as n becomes infinite? We may neglect the
constant a, and write r as a fraction less than I, e.g., 1/10. Then,
what is the value of (1/10)" as n becomes infinite? By allowing n to
take on large, but finite, values it becomes obvious that (I /10)" be-
comes smaller and smaller. approaching 0. When n becomes infinite
we say that (1/10)" equals 0. The formula for the progression under
these circumstances becomes

S a /(1 r)
Although this is not quite rigorous and demands the concept of a

limit, the answer is correct and the student's intuitive ideas suffice in
this case. But, while this appliration of infinity is essentially correct, it
leads to a complete misconception of the nature of infinity itself. The
student notes that a big number. say 10 billion, can be used in this
example to approximate infinity and this is the concept he keeps, i.e.,
that infinity is nothing more than a 'big number: It is just this kind
of intuitive thinking that we are trying to combat. If infinity were
taught comedy. this idea of its being a big finite number would be
dispelled. (It should be added here that the infinity that results from
such examples as dividing 1 by U is not exactly what we have been
discussing. We are concerned with the idea of infinite sets. But, since
the student isn't taught either one of these ideas, this differentiation
can be made later.)

I have examined a number of high school text-books: one of them
is a so-called 'modern' edition of algebra (not to be confused with
those algebra books that teach 'modern' algebra). None of these books
gives any more to the student than the 'intuitive' idea of infinity.



Even one of the best new books, Principles of Mathematics, by
Allendoerfer and Oakley, although an excellent book in most respects,
completely misses the boat in its treatnwnt of infinity. The one-to-one
correspondence is mentioned in passing, and, as an example, the stu-
dent is even asked to show that the even numbers 2, 4, 6, 8, . . . can

- be paired with the integers 1, 2. 3, 4, . . . but no particular signifi-
cance is attached to the result, not even that it is unusual, or con-
trary to what we might expect. It seems incredible that this oppor-
tunity was missed. The whole concept of cardinal number, and of
number itself, is also omitted, although there is a small reference made
to What Is Mathematics? by Courant and Robbins.

As a brief summary we may ask ourselves why this subject is omitted
and neglected. It would seem to be mostly a matter of inertia. Possibly
with the new fields of modern mathematics that are opening up. we
may expect even the educators to take more notice.

As a matter of solace, we may take refuge in knowing that until
just recently, all of the mathematics taught in school had been known
since the time at Newton, about 1700.
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FOREWORD
Ever since Cantor's transfinite numbers first saw the light of day,

mathematicians have speculated as to whether there was an infinity of
greater power than aleph-null but of lesser power than the cardinal
number C. It began to seem as if, like Goldbach's conjecture, this ques-
tion might never be answered. After a lapse of some eighty-five years,
it now appears that there is an answer but a completely unexpected
and somewhat disconcerting answer. We shall not deprive the reader of
the pleasure of the surprise ending.

However, we shall take this opportunity to make an observation
about the nature of mathematics, an observation which will be appre-
ciated more fully after reading Mr. Gardner's suggestive essay. It is
simply this: that the mathematics of the twentieth century is very
different from the mathematics of preceding centuries, and it is quite
pmsible that the mathematics of the twenty-first century may be so
different from our present mathematics that we would scarcely call it
mathematics at all. ISlo one can foretell. Indeed, we may have to aban-
don the idea of a single unified mathematics altogether and be willing
to accept several unrelated mathematics. What would they be like? We
cannot possibly imagine.
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The Hierarchy of Infinities
and the Problems it Spawns

Martin Gardner

A graduate student at Trinity
Computed the square of infinity.

But it gave him the fidgets
To put down the digits,

So he dropped math and took up divinity.
-ANONYMOUS

In 1963 Paul J. Cohen, a 29-year-old mathematician at Stanford Uni-versity, found a surprising answer to one of the great problems of mod-ern set theory: Is there an order of infinity higher than the number ofintegers but lower than the number of points on a line? To make clearexactly what Cohen proved, something must first be said about those
two lowest known levels of infinity.

It was Georg Ferdinand Ludwig Philipp Cantor who first discov-ered that beyond the infinity of the integersan infinity to which hegave the name aleph-null there are not only higher infinities but also
an infinite number of them. Leading mathematicians were sharplydivided in their reactions. Henri Poincari called Cantorism a diseasefrom which mathematics would have to recover, and Hermann Weyl
spoke of Cantor's hierarchy of alephs as "fog on fOg:'

On the other hand, David Hilbert said, "From the paradise createdfor us by Cantor, no one will drive us out: and Bertrand Russell oncepraised Cantor's achievement as "probably the 'greatest of which the
age can boast:" Today only mathematicians of the intuitionist school
and a few philosophers are still uneasy about the alephs. Most mathe-maticians long ago lost their fear of them, and the proofs by which
Cantor established his "terrible dynasties" (as they have been called bythe Argentine writer Jorge Luis Borges) are now universally honored
as being among the most brilliant and beautiful in the history of
mathematics.

Any infinite set of things that can be counted 1, 2, 3... has the cardi-
nal number st (aleph-null), the bottom rung of Cantor's aleph ladder.Of course, it is not possible actually to count such a set; one merely
shows how it can be put into one-to-one correspondence with the count-
ing numbers. Consider, for example, the infinite set of primes. It is
easily put in one-to-one corresponoience with the positive integers:
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1 2 . 3 4 5 6

2 3 5 7 1 I 13 ...
The set of primes is therefore an aleph-null set. It is said to be

"countable"atir "denumerable:' Here we encounter a basic paradox of
all infinite sets. Unlike finite sets, they can be put in one-to-one corre-
spondence with a part of themselves or, more technically, with one of
their "proper subsets:' Although the primes are only a small portion
of the positive integers, as a completed set they have the same aleph
number. Similarly, the integers are only a small portion of the rational
numbers (the integers plus all integral fractions), but the rationals
form an aleph-null Sti too.

There are all kinds of ways in which this can be proved by arranging
the rationals in a countable order. The most familiar way is to attach
them, as fractions, to an infinite square array of lattice points and then
count the points by following a zigzag path, or a spiral path if the lat-
tice includes the negative rationals. Here is another intriguing method
of ordering and counting the positive rationals that was proposed by
the American logician Charles Sanders Peirce.

Start with the fractions 0/1 and 1/0. (The second fraction is mean-
ingless, but that can be ignored.) Sum the two numerators and then
the two denominators to get the new fraction 1/1, and place it between
the previous pair: 0/ I, 1/1, 1/0. Repeat this procedure with each pair of
adjacent fractions to obtain two new fractions that go between them:

0 1 1 2 1

f 2 T T

The five fractions grow, by the same procedure, to nine:
0 1 1 2 1 3 2 3 1

T S -2. 3 T -2= T T
In this continued series every rational number will appear Once and

only once, and always in its simplest fractional form. There is no need,
as there is in other`methods of ordering the rationals, to eliminate frac-
tions, such as 10/20, that are equivalent to simpler fractions also on
the list, because no ret;acible fraction ever appears. If at each step you
fill the cracks, so to speak, from left to right, you can count the frac-
tions simply by taking them in their order of appearance. This series,
as Peirce said, has many curious properties. At each new step the digits
above the lines, taken from left to right, begin by repeating the top
digits of the previous step: 01, 011, 0112 and so on. And at each step
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the digits below the lines are nc same as those above the lines but in
reverse order. The series is closely related to what are called Fare),
numbers (after the English geologist John Farey. who first analyzed
them), about which there is now a considerable literature.

It is easy to show that there is a set with a higher infinite number of
elements than aleph-null. lb explain one of the best of such proofs a
deck of cards is useful. First consider a finite set of three objects, say
a key, a watch and a ring. Each subset of this set is symbolized by a
row of three cards [see illustration en opposite page]; a face-up card
[white] indicates that the object above it is in the subset, a face-down
card [gray] indicates that it is not. The first subset consists of the orig-
inal set itself. The next three rows indicate subsets that contain only
two of the objects. They are followed by the three subsets of single
objects and finally by the empty (or null) subset that contains none of
the objects. For any set of n elements the number of subsets is 2. Note
that this formula applies even to the empty set, since 20 = I and the
empty set has the empty set as its sole subset.

This procedure is applied to an infinite but countable (aleph-null)
set of elements at the left in the illustration [page 38]. Can the sub-
sets of this infinite set be put into one-to-one correspondence with
the counting integers? Assume that they can. Symbolize each subset
with a row of cards, as before, only now each row continues endlessly
to the right. Imagine these infinite rows listed in any order whatever
and numbered 1, 2, 3 ... from the top down. If we continue forzning
such rows, will the list eventually catch all the subsets? No be6use
there is an infinite number of ways to produce a subset that cannot be
on the list. Thc simplest way is to consider the diagonal set of cards
indicated by the arrow and then suppose every card along this diagonal
is turned over (that is, every face-down card is turned up, every face-
up card is turned down). The new diagonal set cannot be the first sub-
set because its first card differs from the first card of subset 1. it cannot
be the second subset because its second card differs from the second
card of subset 2. In general it cannot be the nth subset because its nth
card differs from the nth card of subset n. Since we. have produced a
subset that cannot be on the list, even when the list is infinite, we are
forced to conclude that the original assumption is false. The set of all
st.. ',cis of an aleph-null set is a set with tlw cardinal number 2 raised
to the power of aleph-null. This proof shows that such a set cannot be
matched one to one with the counting integers. It is a higher aleph,
an "uncountable" infinity.

Cantor's famous diagonal proof. in the form just given, conceals a
startling bonus. It proves that the set of real numbers (the rationals
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plus the irrationals) is also uncountable. Consider a line segment, its
ends numbered 0 and 1. Every rational fraction from 0 to I corre-
sponds to a point on this line. Between any two rational points there
is an infinity of other rational points; nevertheless, even after all
rational points are identified, there remains an infinity of unidentified
points points that corresixmd to the unrepeating decimal fractions
attached to such algebraic irrationals as the square root of 2, and to such
transcendental irrationals as pi and e. Every point on the line segment,
rational or irrational, can be represented by an endless decimal fraction.
But these fractions .need not be decimal; they can also be written in
binary notation. Thus every point on the line segment can be represented
by an endless pattern of I's and O's, and every possible endless pattern of
I's and O's corresponds to exactly one point on the line segment.

00C)G0 0i0C1 ®0

A coi!N FABLE INFINITY liAS AN UNCOUNTABLE INHNITV OF sunsurs LEFT)
toxiaspoNn To THE REAL NUMBERS (RIGHT)
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Now, suppose each face-up card at the left in the illustration on page
39 is replaced by 1 and each face-down card by 0, as shown at the right
in the illustration. We have only to put a binary point in front of each
row and we have an infinite list of different binary fractions between
0 and I. But the diagonal set of symbols, after each I is changed to 0
and each 0 to I, is a binary fraction that cannot be on thr list. From
this we see that there is a one-to-one correspondence of three sets: the
subsets of aleph-null, the real members (here represented by binary
fractions) and the totality of points on a line segment. Cantor gave
this higher infinity the cardinal number C, for the "power of the
continuum." He believed it was also 14, (aleph-one), the first infinity
greater than aleph-null.

By a variety of simple, elegant proofs Cantor showed that C was
the number of such infinite sets as the transcendental irrationals (the
algebraic irrationals, he proved, form a countable set), the number of
points on a line of infinite length, the number of points on any plane
figure or on the infinite plane, and the number of points in any solid
figure or in all of three-space. Going into higher dimensions does not
increase the number of points. The points on a line segment one inch
long can be matched one to one with the points in any higher-dimen-
sional solid, or with the points in the entire space of any higher
dimension.

The distinction between aleph-null and aleph-one (we accept, for
the moment, Cantor's identification of aleph-one with C) is important
in geometry whenever infinite sets of figures are encountered. Imagine
an infinite plane tessellated with hexagons. Is the total number of
vertices aleph-one or aleph-null? The answer is aleph-null; they are
easily counted along a spiral path [see illustration on page 41]. On
the other hand, the number of different circles of one-inch radius that
can be placed on a sheet of typewriter paper is aleph-one because in-
side any small square near the center of the sheet there are aleph-one
points, each the center of a different circle with a one-inch radius.

Consider in turn each of the five symbols J. B. Rhine uses in his
"ESP" test cards [page 42]. Can it be drawn an aleph-one number of
times on a sheet of paper, assuming that the symbol is drawn with ideal
lines of no thickness and that there is no overlap or intersection of any
lines? (The drawn symbols need not be the same size, but all must be
similar in shape.) It turns out that all except one can be drawn an aleph-
one number of times. Can the reader show, before the answer is given.
which symbol is the exception?
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Sl'IRAI. COUNTS THE VERTICES OF A HEXAGONAL TESSELLATION

The two alephs are also involved in recent cosmological speculation.
Richard Schlegel, a physicist at Michigan State University, has called
attention in several papers to a strange contradiction inherent in the
"steady state" theory. According to that theory. the number of atoms
in the cosmos at the present time is aleph-null. (The cosmos is re-
garded as infinite even though an "optical horizon" puts a limit on
what can be seen.) Moreover, atoms are steadily increasing in num-
ber as the universe expands. Infinite space can easily accommodate
any finite number of doublings of the quantity of atoms, for whenever
aleph-null is multiplied by two, the result is aleph-null again. (If you
have an aleph-null number of eggs in aleph-null boxes, one egg per
box, you can accommodate another aleph-null set of eggs simply by
shifting the egg in box I to box 2. the egg in box 2 to box 4, and so
on, each egg going to a box whose number is twice the number of the
egg's previous box. This empties all the odd-numbered boxes. which
can then be filled with another aleph-null set of eggs.) But if the
doubling goes on for an aleph-null number of times, we come up
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against the formula of 2 raised to the power of aleph-null that is.
x 2 x 2 ... repeated aleph-null times. As we have seen, this produces

an aleph-one set. Consider only two atoms at an infinitely remote time
in the past. By now, after an akph-null series of doubling's, they would
have grown to an alepli-one set. But the cosmos, at the moment, cannot
contain an aleph-one set of atoms. Any collection of distinct physical
entities (as opposed to the ideal entities of mathematics) is countable
and therefore, at the most, aleph-null.

FIVE "ESP" SYMBOLS

In his latest paper, "1-he Problem of Infinite Matter in Steady-
State Cosmology" (Philosophy of Science, Vol. 32, January, 1965, pages
21-31), Schlegel finds a clever way out. Instead of regarding the past
as a completed aleph-null set of finite time intervals (to be sure, ideal
instants in time form an aleph-one continuum, but Schlegel is con-
cerned with those finite time intervals during which doublings of
atoms occur). we can view both the past and the future as infinite in
the inferior sense of "becoming" rather than completed. Whatever
date is suggested for the origin of the universe (remember, we are deal-
ing with the steady-state model, not with a "big bang" or oscillating
theory), we can always set an earlier date. In a sense there is a "begin-
ning:' but we can push it as far back as we please. There is also an
"end:' but we can push it as far forward as we please. As we go back
in time, continually, halving the number of atoms, we never halve
them more than a finite number of times, with the result that their
number never shrinks to less than aleph-null. As we go forward in
time, doubling the number of atoms, we never double more than a
finite number of times: therefore the set of atoms never grows larger
than aleph-null. In either direction the leap is ?lever made to a com-
pleted aleph-null set of time intervals. As a result the set of atoms
never leaps to akph-one and the disturbing contradiction does not arise.

Cantor was convinced that his endless hierarchy of alephs, each ob-
tained by raising 2 to the power of the preceding aleph, represented
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all the alephs there are. There are none in between. Nor is there an
Ultimate Aleph, such as certain Hegelian philosophers of the time
identified with the Absolute. The endless hierarchy of infinities itself.Cantor argued, is a better symbol of the Absolute.

All his life Cantor tried to prove that there is no aleph between
aleph-null and C, the power of the continuum, but he never found aproof. In 1938 Kurt Godel showed that Cantor's conjecture. whichbecame known as the "continuum hypothesis:' could be assumed tobe true, and that this could not conflict with the axioms of set theory.

What Cohen proved in 1963 was that the opposite could also be
assumed. One can posit that C is not aleph-one; that there is at least
one aleph between aleph-null and C, even though no one has the
slightest notion of how to specify a set (for example a certain subsetof the transcendental numbers) that would have such a cardinal num-ber. This too is consistent with set theory. Cantor's hypothesis is un-
decidable. Like the parallel postulate of Euclidean geometry, it is an
independent axiom that can be affirmed or denied. Just as the two
assumptions about Euclid's parallel axiom divided geometry intoEuclidean and non-Euclidean, so the two assumptions about Cantor's
hypothesis now divide the th-eory of infinite sets into Cantorian and
non-Cantorian. Set theory has been struck a gigantic blow with a
cleaver, and exactly what will come of it no one can say.

Last month's problem was to determine which of the five "ESP"
symbols cannot be drawn an aleph-one number of times on a sheetof paper. assuming ideal lines that do not overlap or intersect, and
replicas that are similar although not necessarily the same size. Only
the plus symbol is limited to aleph-null repetitions. The illustration
[page 44] shows how each of the other four can be drawn an aleph-one
number of times. In each case points on line segment AB form analeph-one continuum. Clearly a set of nested or side-by-side figures
can be drawn so that a different replica passes through each of these
'mints, thus putting the continuum of points into one-to-one corre-spondence with a set of nonintersecting replicas. There is no com-
parable way to place replicas of the plus symbol so that they fit snugly
against each other. The centers of any pair of crosses must be a finite
distance apart (although this distance can be made as small as one
pleases), forming a countable (aleph-null) sct of points.

The problem is similar to one involving alphabet letters that canbe found in Leo Zippin's nes of Infinitv (Random House, 1962).page 57. hl general only figures topologically equivalent to a line seg-
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ment or a simple closed curve can be replicated on a plane, without
intersection, aleph-one times.

PROOF FOR "ESP"-SYMBOI. l'ROBLEM

44

4



FOREWORD

One of the most significant contributions of the ancient Greeks
was the abiding faith in the worth of deductive reasoning, with the
tacit assumption that deductive reasoning, suitably safeguarded, would
never lead to contradictions. This faith has been sustained for over
two thousand years. Yet hardly had Greek mathematics come into
prominence when, ironically, doubts began to appear in the form of
the sophistries proposed by Zeno (5th century B.c.), or, as they are
frequently called, Zeno's paradoxes. These sophistries were logical
arguments, which, although they led to disturbing conclusions, could
not be refuted.

Zeno offered four paradoxes: (1) the Dichotomy; (2) Achilles and
the Tortoise; (3) the Arrow; (4) the Stade. In two of these paradoxes
he argued against the infinite divisibility of time and space. In the
other two he showed that if a finite space and time contained only a
finite number of points and instants, respectively, then we can arrive
at conclusions which are contrary to experience.

Zeno's approach to the problem of the infinite may be summed up
in his own words:1

If there are many, they must be just so many as they are, neither more nor
fewer. But if they are just so many as they are, they must be finite (in number).

If there are many, the existents are infinite (in number); for there are always
other (existents) between existents, and again others between these. And thus
the existents are infinite (in number).

Curiously enough, Zeno's paradoxes have stirred controversies among
mathematicians during the two thousand years that followed. It was
not until Cantor created the continuum and the theory of aggregates
(sets) that the paradoxes could finally be explained satisfactorily. So
we conclude this collection of articles with N. Altshiller Court's lucid
essay on The Motionless Arrow because this paradox is a classic: we
place it last because, hopefully, it will be more meaningful to the
reader after he has become familiar with the transfinite numbers of
the twentieth century. Historical inversion sometimes has its advan-
tages.

' Walter Kauffman; (Ed.). Philotophic Classics, Thaks to St. Thormut. © 1961. By permission of
PrenticeHall. Inc.. Engkwood Cliffs, New Jersey. Also: Evolution in Mathematical Thought by
Herbert Meschkowski. published by Holden-Day, Inc. l965. Page 27. By permissism.
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The Motionless Arrow
N. A. COURT

In the lore of mankind the arrow occupies a conspicuous place, a
place of distinction. There is the heroic arrow with which the legend-
ary William Tell, at the behest of a tyrant, shot an apple off his own
son's head, to say nothing of the other arrow that Tell held in reserve
for the tyrant himself, in case his first aim should prove too low. There
is the sc3ring first arrow of Hiawatha that would not touch the ground
before the tenth was up in the air. There is the universally famous
romantic arrow with which Cupid pierces the hearts of his favorites
or shall I say victims?

There is also an arrow that is philosophical, or scientific, or, better
still, both. This famous "motionless arrow," as it may best be called,
has stirred the mind, excited the imagination, and sharpened the wits
of profound thinkers and erudite scholars for well over two thousand
years.

Zeno of Elea, who flourished in the fifth century B.C., confronted
his fellow philosophers and anybody else who was willing to listen
with the bold assertion that an arrow, the swiftest object known to
his contemporaries, cannot move at all.

According to Aristotle, Zeno's argument for, or proof of, his embar-
rassing proposition ran as follows: "Everything, when in uniform state,
is continually either at rest or in motion, and a body moving in space
is continually in the Now [instant], hence the arrow in flight is at
rest." Some six centuries later another Greek philosopher offered a
somewhat clearer formulation of the argument: "That which moves
can neither move in the place where it is, nor yet in the place where
it is not." Therefore, motion is impossible.

Thc "motionless arrow" was not Zeno's only argutnent of its kind.
He Irid others. Zeno had Achilles engage in a race with a tortoise and
shov,ed a priori that the "light-of-foot" Achilles could never overtake
dm proverbially slow turtle. In Aristotle's presentation, here is the
argument: "In a race the faster cannot overtake the slower, for the
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pursuer must always first arrive at the point from which the one pur-
sued has just departed, so that the slower is always a small distance
ahead:' A modern philosopher states the argument more explicitly:
"Achilles must first reach the place from which the tortoise has started.
By that time the tortoise will have got on a little way. Achilles must
then traverse that, and still the toroise will be ahead. He is always
nearer, but he never makes up to it."

A third argument of Zeno's apinst motion is known as the "Dichot-
omy:' In Aristotle's words: "A thing moving in space must arrive at
the mid-point before it reaches the end-point:' J. Burnet offers a more
elaborate presentation of this argument:

You cannot traverse an infinite number of points in a finite time. You must tra.
verse half a given dhtance before you traverse the whole, and half of that again
before you traverse it. This goes on ad infinitum, so that (if space is made up of
points) there are an infinite number in any given spate, and it cannot be traversed
in a finite time.

Zeno had still other arguments of this kind. But I shall refrain from
quoting them, for by now a goodly number of you have no doubt
already begun to wonder what this is all about, what it is supposed
to mean, if anything, and how seriously it is to be taken. Your in-
credulity, your skepticism, reflect the intellectual climate in which
you were brought up and in which you continue to live. But that climate
has not always been the same. It has changed more than once since the
days of Zeno.

To take a simple example. We teach our children in our schools
that the earth is round, that it rotates about its axis, and also that it
revolves around the sun. These ideas are an integral part of our intel-
lectual equipment, and it seems to us impossible to get along without
them, much less to doubt them. And yet when Copernicus, or Mikolaj
Kopernik, as the Poles call him, published his epoch-making work
barely four centuries ago, in 1543, the book was banned as sinful. Half
a century later, in 1600, Giordano Bruno was burned at the stake in
a public place in Rome for adhering to the Copernican theory and
other heresies. Galileo, one of the founders of modern science, for
profes.sing the same theories, was in jail not much more than three
centuries ago.

What Zeno himself thought of his arguments, for what reason he
advanced them, what purpose he wanted to achieve by them, cannot
be told with any degree of certainty. The data concerning his life are
scant and unreliable. None of his writings are extant. Like the title
characters of some modern novels such as Rebecca, by Daphne du

48

e

4



Maurier, or Mr. Skeffington, by Elizabeth Arnim Russell, Zeno is
known only by what is told of him by others, chiefly his critics and
detractors. The exact meaning of his arguments is not always certain.

Zeno may or may not have been misinterpreted. But he certainly
has not been neglected. Some writers even paid him the highest pos-
sible compliment they tried to imitate him. Thus the "Dichotomy"
suggested to Giuseppe Biancani, of Bologna, in 1615 a "proof" that
no two lines can have a common measure. For the common measure,
before it could be applied to the whole line, must first be applied to
half the line and so on. Thus the measure cannot be applied to either
line, which proves that two lines are always incommensurable.

A fellow Greek, Sextus Empiricus, of the third century A.D., taking
the "motionless arrow" for his model, argued that a man can never
die, for if a man die, it must be either at a time when he is alive or
when he is dead, etc.

It may be of interest to mention in this connection that the Chi-
nese philosopher Hui Tzu argued that a motherless colt never had a
mother. When it had a mother it was not motherless and at every
other moment of its life it had no mother.

Some writers offered very elaborate interpretations of Zeno's argu-
ments. These writers saw in the creator of these arguments a man
of profound philosophical insight and a logician of the first magni-
tude. Such was the attitude of Immanuel Kant and, a century later,
of the French mathematiciz. . Jules Tannery. To Aristotle, who was
born about a century after Zeno, these arguments were just annoying
sophisms whose hidden fallacy it was all the more necessary to expose
in view of the plausible logical form in which they were clothed.
Other writers displayed just as much zeal in showing that Zeno's argu-
ments are irrefutable.

Aristotle's fundamental assumptions are that both time and space
arc continuous, that is. "always divisible into divisible parts:' He
further adds: "The continual bisection of a quantity is unlimited, so
that the unlimited exists potentially, but it is never reached."

With regard to the "Arrow" he says:

A thing is at rest when it is unchanged in the Now and still in another Now,
itself as well as its parts remaining in the same status.... There is no motion, nor
rest in the Now.... In a time interval, on the contrary, it [a variable] cannot
exist in the same state of rest. for otherwise it would follow that the thing in
motion is at rest.
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That it is impossible to traverse an unlimited number of half-dis-
tances (the "Dichotomy"), Aristotle refutes by pointing out that "time
has unlimitedly many parts, in consequence of which there is no ab-
surdity in the consideration that in an unlimited number of time in-
tervals one passes over unlimited many spaces."

The argument Aristotle directs against "Achilles" is as follows:

If thne is continuous, so is distance, for in half the time a thing passes over half
the distance, and, in general, in the smaller time the smaller distance, for time and
distance have the same divisions, and if one of the two is unlimited, so is the other.
For that reason the argument of Zeno assumes an untruth, that one unlimited can-
not travel over another unlimited along its own parts, or touch such an unlimited,
in a finite time; for length as well as time and, in general, everything continuous,
may be considered unlimited in a double sense, namely according to the [number
of] divisions or according to the [distances between the] outermost ends.

Aristotle seems to insist that as the distances between Achilles and
the tortoise keep on diminishing, the intervals of time necessary to
cover these distances also diminish, and in the same proportion.

The reasonings of Aristotle cut no ice whatever with the French
philosopher Pierre Bay le. who in 1696 published his Dictionnaire His-
torique et Critique, translated into English in 1710. Bay le goes into
a detailed discussion of Zeno's arguments and is entirely on the side
of Zeno. He categorically rejects the infinite divisibility of time.

Successive duration of things is composed of moments, properly so called, each
of which is simple and indivisible, perfectly distinct from time past and future
and contains no more than the present time. Those who deny this consequence
must be given up to their stupidity, or their want of sincerity, or to the unsur-
mountable power of their prejudices.

Thus the "Arrow" will never budge.

The philosophical discussion of the divisibility or the nondivisi-
bility of time and space continues through the centuries. As late as
the close of the past century Zeno's arguments based on this ground
were the topic of a very animated discussion in the philosophical
journals of France.

A mathematical approach to "Achilles" is due to Gregory St. Vin-
cent who in 1647 considered a segment AK on which he constructed
an unlimited number of points B, C, D,.. . such that ABIAK
BC1BK=CD1CK=....= r, where r is the ratio, say, of the speed
of the tortoise to the speed of Achilles. He thus obtains the infinite
geometric progression AB + BC + CD , and, since this series
is convergent. Achilles does overtake the elusive tortoise.
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Decartes solved the "Achilles" by the use of the geometric progres-
sion 1/10 + 1/100 + 1/1000 1/9. Later writers quoted this
device or rediscovered it time and again. But this solution of the
problem raised brand-new questions.

St. Vincent overlooked the important fact that Achilles will fail to
overtake the slow-moving tortoise after all, unless the variable sum of
the geometric progression actually reaches its limit. Now: Does a
variable reach its limit, or does it not? The question transcends, by
far, the "Achilles." It was, for instance, hotly debated in connection
with the then nascent differential and integral calculus. Newton be-
lieved that his variables reached their limits. Diderot, writing a cen-
tury or so later in the famous Encyclopédie, is quite definite that a
variable cannot do that, and so is De Morgan, in the Penny Cyclopedia
in 1846. Carnot and Cauchy, like Newton, have no objections to var-
iables reaching their limits.

The other question that arises in connection with St. Vincent's pro-
gression is: How many terms does the progression have? The answer
ordinarily given is that the number is infinite. This answer, however,
may have two different meanings. We may mean to say that we can
compute as many terms of this progression as we want and, no matter
how many we have computed, we can still continue the process. Thus
the number of ternis of the progression is "potentially" infinite. On
the Other hand, we may imagine that all the terms have been calcu-
lated and are all there forming an infinite collection. That would
make an "actual" infinite. Are there actually infinite collections in
nature? Obviously, collections as large "as the stars of the heaven, and
as the sand which is upon the seashore," are nevertheless finite collec-
tions.

From a quotation of Aristole already given it would seem that he
did not believe in the actually infinite. Galileo, on the other hand,
accepted the existence of actual infinity, although he saw clearly the
difficulties invok ed. If the number of integers is not only potentially
but actually infinite, then there are as many perfect squares as there
are integers, since for every integer there is a perfect square and every
perfect square has a square root. Galileo tried to console himself by
saying that the difficulties are due to the fact that our finite mind can-
not cope with the infinite. But De Morgan sees no point to this argu-
ment, for, even admitting the "finitude" of our mind, "it is not neces-
sary to have a blue mind to conceive of a pair of blue eyes."

A younger contemporary of Galileo, the prominent English philos-



opher Thomas Hobbes (1588-1679), could not accept Galileo's actual
infinity, on theological grounds. "Who thinks that the number of even
integers is equal to the number of all integers is taking away eternity
from the Creator." However, the very same theological reasons led a
very illustrious younger contemporary of Hobbes, namely, Leibnitz, to
the firm belief that actual infinities exist in nature pour mieux marquer
les perfection.% de son auteur.

The actual infinite was erected into a body of doctrine by Georg
Cantor (1845-1918) in his theory of transfinite numbers. The out-
standing American historian of mathematics, Florian Cajori, considers
that this doctrine of Cantor's provided a final and definite answer to
Zeno's paradoxes and thus relegates them to the status of "problems
of the past."

Tobias Danzig in his Number, the Language of Science is not quite
so happy about it, in view of the fact that the whole theory of Can-
tor's is of doubtful solidity.

Whatever may have been the reasons that prompted Zeno to pro-
mulgate his paradoxes, he certainly must have been a man of courage
if he dared to deny the existence of motion. We learn of motion and
learn to appreciate it at a very, very early age; motion is firmly im-
bedded in our daily existence and becomes a basic element of our
psychological make-up. It seems intolerable to us that we could be
deprived of motion, even in a jest.

Nevertheless, the systematic study of motion is of fairly recent
origin. The ancient world knew a good deal about Statics, as evi
denced by the size and solidity of the structures that have survived to
the present day. But they knew next to nothing about Dynamics, for
the forms of motion with which they had any experience were of very
narrow scope. Their machines were of the crudest and very limited
in variety. Zeno's paradoxes of motion were for the Greek philoso-
plwrs "purely academic" questions.

The astronomers were the first to make systematic observations of
motion not due to muscular force and to make deductions from their
observations. Man studied motion in the skies before he busied him-
self with such studies on earth. How difficult it was for the ancients
to dissociate motion from muscular effort is illustrated by the fact that
Helios (the sun) was said by the Greeks to have a palace in the east
whence he was drawn daily across the sky in a fiery chariot by four
white horses to a Flace in the west.

The famous experiments of Galileo with falling bodies are the be-



ginning of modern Dynamics. The great voyages created a demand for
reliable clocks, and the study of clock mechanisms and their motion
engaged the attention of such outstanding scholars as Huygens. No
small incentive for the study of motion was provided by the needs of
the developing artillery. The gunners had to know the trajectories of
their missiles. The theoretical studies of motion prompted by these
and other technical developments were in need of a new mathematical
tool to solve the newly arising problems. and calculus came into being.

The infinite, the infinitesimal, limits and other notions that were
involved, perhaps crudely, in the discussion of Zeno's arguments were
also involved in this new branch of mathematics. These notions were
as hazy as they were essential. Both Newton and Leibnitz changed
their views on these points during their lifetimes because of their own
critical acumen as well as the searching criticism of their contempo-
raries. But neither of them ever entertained the idea of giving up
their precious find, for the good and sufficient reason that this new
and marvelous tool gave them the solution of some of the problems
that had defied all the efforts of mathematicians of preceding genera-
tions. The succeeding century. the eighteenth, exploited to the utmost
this new instrument in its application to the study of motion, andbefore the century was over it triumphantly presented to the learned
world two monumental works: the Weanique Analytique of Lagrange
and the Mt:canique Uleste of Laplace.

The development of Dynamics did not stop there. It kept pace with
the phenomenal development of the experimental sciences in the nine-
teenth century. These theoretical studies on the one hand served as a
basis for the creation of a technology that surpassed the wildest dreams
of past generations and on the other hand changed radically our atti-
tude toward many of the problems of the past: they created a new
intellectual atmosphere. a new "intellectual climate."

Zeno's arguments. or paradoxes, if you prefer, deal with two ques-
tions which in the discussions of these paradoxes are very closely con-
nected, not to say mixed up: What is motion, and how can motion be
accounted for in a rational, intellectual way? By separating the two
parts of the problem we may be able to come much closer to finding
a satisfactory answer to the question, in accord with the present-day
intellectual outlook.

The critical study of the foundations of mathematics during the
nineteenth century made it abundat,1 iv clear that no science and, more
generally, no intellectual disciplin, ,an define all the terms it uses
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without creating a vicious circle. To define a term means to reduce it
to some more familiar component parts. Such a procedure obviously
has a limit beyond which it cannot go. Most of us know what the
color "red" is. We can discuss this color with each other; we can wonder
how much the red color contributes to the beauty of a sunset; we can
make use of this common knowledge of the red color for a common
purpose, such as directing traffic. But we cannot undertake to explain
what the rcd color is to a person born color blind.

In the science of Dynamics motion is such a term, such an "unde-
fined" term, to use the technical expression for it. Dynamics does not
propose to explain what motion is to anyone who does not know that
already. Motion is one of its starting points, one of its undefined, or
primitive, terms. This is its answer to the question: What is motion?

Thu have heard many stories about Diogenes. He lived in a barrel.
He threw away his drinking cup when he noticed a boy drinking out
of the hollow of his hand. He told his visitorMexander, the Great,
that the only favor the mighty conqueror could possibly do him was
to step aside so as not to obstruct the sun for the philosopher. Well,
there is also the story that when Diogenes was told of Zeno's argu-
ments about the impossibility of motion, he arose from the place
where he was sitting on the ground alongside his barrel, took a few
steps. and returned to his place at the barrel without saying a single
word. This was the celebrated Cynic philosopher's "eloquent" way of
saying that motion is. And did he not also say at the same time that
motion is an -undefined term"?

St. Augustine (354-430) used an even more convincing method to
emphasize the same point. He wrote:

When the discourse [on motion] was concluded, a boy came running from the
house to call for dinner. I then remarked that this boy compels us not only to
define motion, but to see it before our very eyes. So let us go anti pass from one
plate to another, for that is, if I am not mistaken, nothing else than motion.

I he revered theologian seems to have known. from personal experi-
ence, that nothing is as likely to set a man in motion as a well-gar-
nished table.

Let us now turn to the second part involved in Zeno's paradoxes,
namely, how to account for motion in a rational way. All science may
be said to be an attempt to give a rational account of events in na-
ture, of the ways natural phenomena run their courses. The scientific
theories are a rational description of nature that enables us to foresee
and foretell the course of natural events. This characteristic of scien-
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tific theories affords us an intellectual satisfaction, on the one hand,
and, on the other hand, shows us how to control nature for our bene-
fit, to serve our needs and comforts. Prt:voir pour pouvoir, to quote
Henri Poincare. A scientific theory, that is, a rational description of
a sector of nature, is acceptable and accepted only as long as its pre-
visions agree with the facts of observation. There can be no bad theory.
If a theory is bad or goes bad, it is modified or it is thrown out com-
pletely.

"Achilles" is an attempt at a rational account of a race, a theoretical
interpretation of a physical phenomenon. The terrible thing is that
Zeno's theory predicts one result, while everybody in his senses knows
quite well that exactly the contrary actually takes place. Aristotle in
his time and day felt called upon to use all his vast intellectual powers
to refute the paradox. Our present intellectual climate imposes no
such obligation upon us. If saying that in order to overtake the tor-
toise Achilles must first arrive at the point from which the tortoie
started, etc., leads to the conclusion that he will never overtake the
creeping animal, we simply infer that Zeno's theory of a race does not
serve the purpose for which it was created. We declare the scheme to
be unworkable and proceed to evolve another theory which will render
a more satisfactory account of the outcome of the race.

That, of course, is assuming that the theory of Zeno was offered
in good faith. If it was not, then it is an idle plaything, very amusing,
perhaps. very ingenious, if you like, but not worthy of any serious
consideration. There are more worthwhile ways of spending one's time
than in shadow boxing. Our indifferent attitude towards Zeno's para-
doxes is perhaps best manifested by the fact that the article "Motion"
in the Britannica does not mention Zeno, whereas Einstein is given
considerable attention;. the Americana dismisses "Motion" with the
curt reference "see Mechanics."

Consider an elastic ball which rebounds from the ground to 2/3 of
the height from which it fell. When dropped from a height of 30 feet,
how far will the ball have traveled by the time it stops? Any bright
freshman will immediately raise the question whether that ball will
ever stop. On the other hand, that same freshman knows full well that
after a while the ball will quietly lie on the ground. Will we be very
much worried by this contradiction? Not at all. We will simply draw
the conclusion that the law of rebounding of the ball, as described,
is faulty.

The difficulties encountered in connection with the question of a
variable reaching or not reaching a limit are of the same kind and
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nature. The mode of variation of a variable is either a description
of a natural event or a creation of our imagination, without any physi-
cal connotation. In the latter case, the law of variation of the variable
is prescribed by our fancy, and the variable is completely at our mercy.
We can make it reach the limit or keep it from doing so, as we may
see fit. In the former case it is the physical phenomenon that decides
the question for us.

Two bicycle riders, 60 miles apart, start towards each other, at the
rate of 10 miles per hour. At the moment when they start a fly takes
off from the rim of the wheel of one rider and flies directly towards
the second rider at the rate of 15 miles per hour. As soon as the fly
reaches the second rider it turns around and flies towards the first, etc.
What is the sum of the distances of the oscillations of the fly? In Zeno's
presentation the number of these oscillations is infinite. But the flying
time was exactly. 3 hours, and the fly covered a distance of 45 miles.
The variable sum actually reached its limit.

The sequence of numbers 1, 1/2, 14, 1/8, 1/16, . obviously has for
its limit zero. Does the sequence reach its limit? Let us interpret this
sequence, somewhat facetiously, in the following manner. A rabbit
hiding in a hollow log noticed a dog standing at the end near him.
The rabbit got scared and with one leap was at the other end; but
there was another dog. The rabbit got twice as scared, and in half the
time he was back at the first end; but there was the first dog, so the
rabbit got twice as scared again, etc. If this sequence reaches its limit,
the rabbit will end up by being at both ends at the same time.

If a point Q of a curve (C) moves towards a fixed point P of the
curve, the line PQ revolves about P. If Q approaches P as a limit, the
line PQ obviously approaches as a limiting position the tangent to the
curve (C) at the point P; and if the point Q reaches the position P or,
what is the same thing, coincides with P. the line PQ will coincide
with the tangent to (C) at P.

If s represents the distance traveled by a moving point in the time t,
does the ratio s / t approach a limit when t approaches zero as a limit?
In other words, does a moving object have an instantaneous velocity at
a point of its course, or its trajectory? Aristotle could not answer that
question; he probably could not make any sense of the question. Aristotle
agreed with Zeno that there can be no motion in the Now (moment).
But to us the answer to this question is not subject to any doubt what-
ever: we are too accustomed to read the instantaneous velocities on the
speedometers of our cars.
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The divisibility or the nondivisibility of time and space was a vital
question to the Greek philosophers, and they had no criterion accord-
ing to which they could settle the dispute. To us time and space are
constructs that we use to account for physical phenomena, constructs
of our own making, and as such we are free to use them in any manner
we see fit. Albert Einstein did not hesitate to mix the two up and make
of them a space-time continuum when he found that such a construct
is better adapted to account for physical phenomena according to his
theory of relativity.

I have dealt with the two parts of Zeno's paradoxes: the definition
of motion and the description of motion. There is, however, a third
element in these paradoxes, and it is this third element that is prob-
ably more responsible for the interest that these paradoxes held through-
out the centuries than those I have considered already. This is the logi-
cal element.

That Zeno was defending an indefensible cause was clear to all those
who tried to refute him. But how is it possible to defend a false cause
with apparently sound logic? This is a very serious challenge. If sound
logic is not an absolute guaranty that the propositions defended by that
method are valid, all our intellectual endeavors are built on quicksand,
our courts of justice arc meaningless pantomime, etc.

Aristotle considered that the fundamental difficulty involved in Zeno's
argument against motion was the meaning Zeno attached to his "Now."
If the "Now," the moment, as we would say, does not represent any
length of time but only the durationless boundary between two adjacent
intervals of time, as a point without length is the common boundary of
two adjacent segments of a line, then in such a moment there can be no
motion; the arrow is motionless. Aristotle tried to refute Zeno's denial
of motion by pointing out that it is wrong to say that time is made up
of durationless moments. But Aristotle was not very convincing, judg-
ing by the vitality of Zeno's arguments.

Our modern knowledge of motion provides us with better ways of
meeting Zeno's paradoxes. We can grant Zeno both the durationless
"Now" and the immobility of the object in the "Now" and still con-
tend that these two premises do not imply the immobility of the arrow.
While the arrow does not move in the "Now," it conserves its capacity,
its potentiality of motion. In our modern terminology, in the "Now"
the arrow has an instantaneous velocity. This notion of instantaneous
velocity is commonplace with us; we read it "with our own eyes" on our
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speedometers every day. But it was completely foreign to the ancients.
Thus Zeno's reasoning was faulty beamse he did not know enough about
the subject he was reasoning about.

Zeno's apparently unextMguishable paradoxes. as they are referred to
by E. T. Bell in an article recently published in Scripta Mathematica,
will not be put out of circulation by my remarks about them. I have no
illusions about that; neither do I have any such ambitions. These para-
doxes have amused and excited countless generations, and they should
continue to do so. Why not?
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